
Using the Scalable Parallel Random Number
Generator (SPRNG) Library in the Milagro

Implicit Monte Carlo (IMC) Code

LA-UR-02-0624

Todd J. Urbatsch

Thomas M. Evans

CCS–4, Transport Methods Group

Los Alamos National Laboratory

Los Alamos, NM 87544

SPRNG Workshop

Sandia National Laboratory

February 11-12, 2002

Abstract. We describe briefly the Milagro Implicit Monte Carlo (IMC) Code for nonlinear thermal radia-
tive transfer calculations. In particular, we describe how Milagro uses the Scalable Parallel Random Number
Generator (SPRNG) Library for its random number generation. The encapsulation of the SPRNG Library
has fit nicely into Milagro’s levelized design and component tests. We have enjoyed success with Milagro
and SPRNG. We conclude with a few issues that we would like the SPRNG developers to address.

1

Outline

1. The Milagro Implicit Monte Carlo (IMC) Code

2. SPRNG in Milagro

3. Success with Milagro and SPRNG

4. SPRNG Usage Issues

2

Milagro IMC

Fleck & Cummings Implicit Monte Carlo method for non-
linear thermal radiative transfer:

• used for astrophysics, inertial confinement fusion (ICF)
• nonlinear: material and radiation codependent
• linearized over each timestep
• time-implicitness: absorption/reemission represented

as an effective scatter

The Milagro IMC Code:

• levelized design
• object oriented C++

• templated on mesh type
• testing

– Design-by-ContractTM

– component testing
– regression testing
– verification problems

• parallel

3

Milagro Design Concepts

• written in C++ using Object-Oriented/generic design
concepts;

• design is levelized both physically and logically;
• testing in 3 levels: component, code, regression;
• Design-By-Contract is used for run-time verification;
• major components are templated on the discretized

independent parameters: space and frequency;
• variations of the Factory Method and Builder pat-

tern are used to separate disparate input conditions
from the objects that perform the transport calcula-
tion;

• code is designed into components that can be reused
for different packages;

• the same subset of components have been used to
build three distinct packages: Milagro, Wedge-
hog, and Milstone;

• we use the Common Data Interface (cdi) to access
data through a common interface specification;

• multiple parallel topologies are easily supported through
the application of the Factory Method pattern.

4

Factory Pattern for Source

Two generalizations of the Source Builder are used to
build the source on each processor depending on the de-
sired parallel topology. The Source Builder does load-
balancing calculations and ensures that the problem is
reproducible, regardless of the topology.

Source_Builder
+build_Source(): SP<Source<MT,PT>
+calc_initial_census()

MT
PT

Topology

DD_Source_Builder

MT
PT

Rep_Source_Builder

MT
PT

Opacity
MT

Mat_State
MT

 1

*

Parallel_Data_Operator
+local_to_global()
+check_global_equiv()
+global_sum()

 1

 1

*

MT::CCSF
T

data fields

 10,*

Source

MT
PT

«instantiates»

«Mesh Type»
MT

Rnd_Control

Interface

«Interface Type»
IT

5

Milagro Levelization Diagram

Level 1:

Level 2:

Level 3:

Level 4:

Level 5:

Level 6:

ds++

c4rng cdi

mc

imc

milagro_interfaces

milagro_manager

6

Milagro’s Mesh Types

• Orthogonal Structured, Nonuniform

• Orthogonal AMR

• RZWedge AMR

• Tetrahedral (not integrated yet)

7

Milagro’s Parallel IMC

• Reproducible

• Distributed Memory Model

1. Domain Replication

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Processor 0 Processor 1

2. Domain Decomposition

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

Processor 0 Processor 1

• Future: Shared and Mixed Memory Models
1. OpenMP
2. OpenMPI

8

Reproducibility in IMC

• Reproducible IMC ⇒ Reproducible Particles
� Give each particle its own RN generator

• Reproducible Particles ⇒ Reproducible generator IDs
� Construct two arrays per cell per processor:
1. starting generator IDs
2. number of particles to run

9

Reproducibility on a Replicated Mesh

Example: 2 cells, 3 particles per cell, 2 processors

global processor 0 processor 1

particles 3 3 2 1 1 2

starting ID 0 3 0 3 2 4

• Number of Particles
1. divide particles evenly among the processors
2. leftover particles go to a sliding string of processors
3. requires no communication

• Starting ID
1. maintain running cell-dependent offset (global)
2. loop over cells, summing the following

(a) global offset
(b) even-split particles from prior processors
(c) leftover particles from prior processors

3. requires no communication

10

Reproducibility on a Decomposed Mesh

Example: 2 cells, 3 particles per cell, 2 processors

global processor 0 processor 1

particles 3 3 3 3 3 3

starting ID 0 3 0 3 0 3

• Starting ID
1. requires global mesh-sized array of number of par-

ticles
2. requires global mesh-sized array of starting ran-

dom numbers
3. requires global collapses of data

11

SPRNG Wrappers

The SPRNG random number functionality was abstracted
in our packages through a set of C++ wrappers. The wrap-
per design is a simplified variant of the Factory Method
pattern [Gamma et al. 1995]. The wrappers meet the
following requirements.

• Hides SPRNG implementation (function calls) from
clients;

• Protects memory implementation of SPRNG; it is
memory-safe;

• Creates independent random number generators that
are specified by user-input stream numbers;

The rng package contains the wrapper classes we use
to access SPRNG.

12

RNG Package

The package consists of two classes (plus tests): Rnd Control
and Sprng.

Rnd_Control
-seed: int
-number: int
-streamnum: int
-parameter: int
-size: int
+Rnd_Control(_seed_:int,_number_:int,_streamnum_:int,_parameter_:int=1)
+get_rn(): Sprng
+get_rn(str_num:int): Sprng
+spawn(rnd_num:Sprng): Sprng
+set_stream_num(str_num:int)
+get_stream_num(): int
+get_size(): int
+get_seed(): int
+get_number(): int

Sprng
-streamid: SprngValue *
-streamnum: int
+Sprng(idval:int *,number:int)
+Sprng(rhs:Sprng)
+Sprng(packed:vector<char>)
+~Sprng()
+operator=(rhs:Sprng): Sprng
+pack(): vector<char>
+ran(): double
+get_id(): int*
+get_num(): int «private nested struct»

Sprng::SprngValue
+refcount: int
+id: int *
+SprngValue(idval:int *)
+~Sprng()

reference counting 1..n

 state
 1

SprngValue is a
private nested
struct that is
used for reference
counting

{streamid is destroyed if refcount == 0}

13

RNG Usage

Usage is straightforward:

controller:Rnd_Control

client

rnd_number:Sprng

«create»

get_rn()

make_random_number_generator()

«create»

rnd_number

ran()

get_rn()

the next independent stream
is automatically choosen on
each call of get_rn(); the
client also has the choice
of manually specifying the
stream number

{free_sprng is called
when last copy of
rnd_number goes out of
scope}

14

Success with SPRNG

• SPRNG fits into our object-oriented, levelized design

– SPRNG encapsulates random number generation
∗ theory
∗ expertise
∗ algorithms
∗ coding
∗ testing

– RNG: our fully-tested wrapper
∗ allows for different SPRNG generators
∗ allows for different vendors besides SPRNG

• Milagro has been successful without RNG worries
– passed verification tests
– design/development practices have allowed confi-

dent refactoring
– rigorous testing yeilds an IMC capability that ac-

tually works for the users, right out of the box
– matched experimental ICF results

15

SPRNG Usage Issues

1. Access limited to size of int=232 generators

2. Different random number generators for different ini-
tial number of generators

3. Size of states

16

Issue 1: Limited Access

Access limited to size of int=232 generators

1. Defeats the whole purpose of using SPRNG’s genera-
tors with a gazillion different random number streams

2. Fixes
(a) wrap generator ID around back to zero

(i) works now and is in use
(ii) incurs modulo cost
(iii) wrap around at 1e9 (that’s the value of num gens)

(b) make num gens a “long long”
(i) system must treat long-longs as 8-byte integers
(ii) C++ standard doesn’t specify

(c) make num gens an array

3. Questions and Discussion
(a) can num gens be made a long-long?
(b) current workaround may be adequate...
(c) iff, wrapping around at num gens is okay.
(d) ideally num gens should be an 8-byte integer

17

Issue 2: Effects of Changing Initial num gens

Different initial num gens gives different streams

1. Initially, we wrapped around at 2e9 generators

2. Realized that we had only initialized 1e9 generators
→ oops, error!

3. Different streams with new num gens

4. Spawning causes this nonreproducibility

5. Questions and Discussion
(a) can the applicable generators be made reproducible

independent of initial num gens?
(b) should they?
(c) for IMC, spawning isn’t heavily taxed

18

Issue 3: RN State Size

Large memory cost for storing state with each particle

1. We store the RN state with the census particles

2. Memory isn’t a problem yet, but it may be soon

3. Potential workaround for state sizes
(a) use smaller lags in Fibonacci
(b) use different generator
(c) don’t store, recreate RN state of reborn census

particles
• brute force: store generator ID and number of

random numbers used, then spin the dial
• analytic way to jump ahead – do all generators

have this capability?

4. Questions and Discussion
(a) what’s the status of smaller lags with SPRNG?
(b) our high-level regression tests are tied to the gen-

erator (lots of work to change generator types)
(c) Can the RN state be recreated instead of stored?

• takes up 2/3 of a census particle’s storage
• can it be done efficiently?

19

Conclusion

We have been very happy with SPRNG. Its encapsulated,
high quality capability has fit nicely into our Monte Carlo
code development. We look forward to SPRNG address-
ing our current existing issues, and we hope that our use
of SPRNG will continue to influence and benefit its main-
tenance, research, and development.

20

